BPL students and post-docs who are supported by MnDRIVE funding:

Tonya Rich, Graduate, (Mentor Dr. Bernadette Gillick)
Project: Non-Invasive Brain Stimulation in Children with Stroke: Promoting Cortical Excitability, Motor Functioning and Community
Significance: Involvement Tonya Rich's work will lead to innovative neuromodulation rehabilitation interventions that optimize neurorecovery and hand function in children with stroke.

Kate Frost, Graduate, (Mentor Dr. James Carey)
Project: Effect of different inter-pulse intervals of paired associative stimulation on cortical excitability in people with chronic stroke.
Significance: Kate Frost's work will lead to novel non-invasive neuromodulation protocols to promote movement recovery after stroke.

Jerel Mueller, Postdoctoral (Mentor Dr. Wynn Legon)
Project: Manipulation of electromyographic activity by transcranial-focused ultrasound stimulation of human motor cortex.
Significance: Dr. Mueller’s research will provide an empirically observable metric of the cortical effects of transcranial-focused ultrasound, and will significantly advance the utility of ultrasound methods for human neuromodulation.

Chao-Ying Chen, Postdoctoral (Mentor Dr. Bernadette Gillick)
Project: Perinatal Stroke: Understanding Brain Reorganization through Infant Neuroimaging and Measures of Neuro-excitability.
Significance: Directing development of neuromodulatory interventions to enhance motor outcomes in infants with stroke at or around the time of birth, this project will enhance the understanding of early brain reorganization and recovery.

Cecelia Prudente, Postdoctoral (Mentor Dr. Teresa Kimberley)
Project: Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) in laryngeal dystonia.
Significance: This proposal will address whether is possible to normalize the brain excitability in people with laryngeal dystonia (dystonia affecting the vocal cords) using repetitive transcranial magnetic stimulation. This will help us understand differences in the brain associated with the disorder, as well as contribute to the development of future clinical interventions for laryngeal dystonia.